Restricted Boltzmann Machines for Robust and Fast Latent Truth Discovery

نویسندگان

  • Klaus Broelemann
  • Thomas Gottron
  • Gjergji Kasneci
چکیده

We address the problem of latent truth discovery, LTD for short, where the goal is to discover the underlying true values of entity attributes in the presence of noisy, conflicting or incomplete information. Despite a multitude of algorithms to address the LTD problem that can be found in literature, only little is known about their overall performance with respect to effectiveness (in terms of truth discovery capabilities), efficiency and robustness. A practical LTD approach should satisfy all these characteristics so that it can be applied to heterogeneous datasets of varying quality and degrees of cleanliness. We propose a novel algorithm for LTD that satisfies the above requirements. The proposedmodel is based on Restricted Boltzmann Machines, thus coined LTD-RBM. In extensive experiments on various heterogeneous and publicly available datasets, LTD-RBM is superior to state-of-the-art LTD techniques in terms of an overall consideration of effectiveness, efficiency and robustness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative Restricted Boltzmann Machines for Parts-based Representations Discovery and Predictive Model Stabilization

The success of any machine learning system depends critically on effective representations of data. In many cases, it is desirable that a representation scheme uncovers the parts-based, additive nature of the data. Of current representation learning schemes, restricted Boltzmann machines (RBMs) have proved to be highly effective in unsupervised settings. However, when it comes to parts-based di...

متن کامل

Learning Parts-based Representations with Nonnegative Restricted Boltzmann Machine

The success of any machine learning system depends critically on effective representations of data. In many cases, especially those in vision, it is desirable that a representation scheme uncovers the parts-based, additive nature of the data. Of current representation learning schemes, restricted Boltzmann machines (RBMs) have proved to be highly effective in unsupervised settings. However, whe...

متن کامل

Tensor-Variate Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are an important class of latent variable models for representing vector data. An under-explored area is multimode data, where each data point is a matrix or a tensor. Standard RBMs applying to such data would require vectorizing matrices and tensors, thus resulting in unnecessarily high dimensionality and at the same time, destroying the inherent higher-ord...

متن کامل

Mixed-Variate Restricted Boltzmann Machines

Modern datasets are becoming heterogeneous. To this end, we present in this paper MixedVariate Restricted Boltzmann Machines for simultaneously modelling variables of multiple types and modalities, including binary and continuous responses, categorical options, multicategorical choices, ordinal assessment and category-ranked preferences. Dependency among variables is modeled using latent binary...

متن کامل

Temporal Restricted Boltzmann Machines for Dependency Parsing

We propose a generative model based on Temporal Restricted Boltzmann Machines for transition based dependency parsing. The parse tree is built incrementally using a shiftreduce parse and an RBM is used to model each decision step. The RBM at the current time step induces latent features with the help of temporal connections to the relevant previous steps which provide context information. Our p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.00283  شماره 

صفحات  -

تاریخ انتشار 2017